Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.12.476120

ABSTRACT

The protective human antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus focuses on the spike (S) protein which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope (supersite) on the N terminal domain (NTD). Here, using the single B cell technology LIBRA-seq, we isolated a large panel of NTD-reactive and SARS-CoV-2 neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies to the NTD supersite commonly are encoded by the IGHV1-24 gene, forming a genetic cluster that represents a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited cell-to-cell spread of virus in culture, and conferred protection in human ACE2 transgenic mice against SARS-CoV-2 challenge. This study provides insight about antibody targeting of the S protein trimer interface region, suggesting this region may be a site of virus vulnerability.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428529

ABSTRACT

The SARS-CoV-2 pandemic has led to an urgent need to understand the molecular basis for immune recognition of SARS-CoV-2 spike (S) glycoprotein antigenic sites. To define the genetic and structural basis for SARS-CoV-2 neutralization, we determined the structures of two human monoclonal antibodies COV2-2196 and COV2-21301, which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor binding domain (RBD) of SARS-CoV-2. COV2-2196 forms an 'aromatic cage' at the heavy/light chain interface using germline-encoded residues in complementarity determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals1-4. The structure of COV2-2130 reveals that an unusually long LCDR1 and HCDR3 make interactions with the opposite face of the RBD from that of COV2-2196. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the critical residues of both antibodies and identified positions of concern for possible viral escape. Nonetheless, both COV2-2196 and COV2130 showed strong neutralizing activity against SARS-CoV-2 strain with recent variations of concern including E484K, N501Y, and D614G substitutions. These studies reveal germline-encoded antibody features enabling recognition of the RBD and demonstrate the activity of a cocktail like AZD7442 in preventing escape from emerging variant viruses.


Subject(s)
Severe Acute Respiratory Syndrome
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428353

ABSTRACT

Spontaneous and selection-pressure-driven evolution of SARS-CoV-2 has started to pose more challenges to controlling the pandemic. Here, we first investigated cross-species receptor usage of an early SARS-CoV-2 isolate and multiple SARS-CoV-2 variants that emerged during the pandemic. We found that, in contrast to the early isolate, the circulating variants B.1.1.7/501Y.V1, B.1.351/501Y.V2, and P.1/501Y.V3 were able to use rat and mouse Ace2 orthologs as entry receptors, suggesting that rats and mice might be able to harbor and spread these variants. We then evaluated sensitivity of these variants to three therapeutic antibodies in clinics (CB6, casirivimab, and imdevimab) and an ACE2-Ig variant we developed recently. We found that all the tested variants developed resistance to at least one of the tested antibodies, but none of the variants showed resistance to ACE2-Ig. These data demonstrate that ACE2-Ig is a good drug candidate against SARS-CoV-2 variants that emerge over the course of the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL